
9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 1/22

CS 194-26: Image Manipulation and Computational Photography, Fall 2022

Project 2: Fun with Filters and Frequencies!
Ethan Gnibus

Overview
In this project, I will manipulate images using filters and frequency to extract useful information and
make cool art. I will use filters to
blur images, take the partial derivative in x and y of images, and
edge detect images. I will use frequencies to sharpen images, make
hybrid images, and blend images together!

Part 1: Fun with Filters

Part 1.1 Finite Difference Operator

Here is the Cameraman Image

cameraman.png

We can find the partial derivative in x and y of any image using convolution.
To do this, we will construct the finite difference operators
D_x = [1, -1]
and D_y = [1, -1].T. Next we will convolve the original image by D_x and D_y
to get the following:



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 2/22

Partial derivative in x Partial derivative in y

We can combine the partial derivative in x and y to get the gradient magnitude of our
original image:

Gradient Magnitude

To edge detect, we can binarize the gradient magnitude by turning pixels white
if their value is above a threshold, or turning them
black if not:

Bad Edge Detection

Why Gradient Magnitude works for edge detection:



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 3/22

Using partial derivatives, we are able to find the slope of how fast things
change in the x and y directions of our images. If slope is high
at a given point,
we know that significant change happens at that point. Knowing where significant
change in the x and y directions are
useful, because we can combine them
to see where significant change happenes in both directions! This is essentially
what taking the
gradient magnitude is. Now that we know where significant change is
in all directions, we can use that information to determine how
significant that
change must be for our algorithm to recognize that pixel as an edge.

Part 1.2 Derivative of Gaussian (DoG) Filter

Unfortunately, our edge detection algorithm alone results in lots of unwanted noise. To filter out some of the high frequencies
in this
image, we will run the original image through a low-pass filter before running our edge detecion
algorithm:

Input Image Blurred Image Edge De

Here we can compare our old edge detection algorithm (no blur) and our new edge detection algorithm (with blur)

Edge Detection Before Blur Edge Detection After Blur

As we can see, when we blur we get much less noise! This is because blurring an image removes it's high frequencies.
We can also see
that this process has a tradeoff. The edge detection algorithm finds fine lines on the unblurred image,
but it finds thick lines on the
blurred image. The lack of high frequency data makes our edge detection estimate on
lower freqency data, resulting in less drastic
change.
This shows that there is dynamic between edge detection accuracy and
noise reduction that you have to optimize when
making an edge detection algorithm.

Runtime Optimizations

To speed up our algorithm, we can take the derivative of the Gaussian filters, then use them to convolve the
input image. This is in
contrast to taking the partial derivatives of the original image, then convolving the partial derivatives by a Gaussian filter. Here's a
visualization of our two processes:

Before Runtime Optimizations



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 4/22

Input Image

Convolve input image by Gaussian Filter

Blurred Image

Partial derivative in x (one convolution call) Partial derivative in y (one convolution call)

Gradient Magnitude



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 5/22

Output Image

Here we have a total of 3 convolution calls

After Runtime Optimizations

Input Image

Convolve by Partial
Derivative in dx Gaussian

Filter

Convolve by Partial
Derivative in dy
Gaussian Filter

Blurred Partial Derivative
in x

Blurred Partial
Derivative in y

Gradient Magnitude



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 6/22

Output Image

Here we have a total of 2 convolution calls

As we can see, we get the same result, but the second approach is much faster!

Part 2: Fun with Frequencies!

Part 2.1: Image "Sharpening"

Sometimes when you are working with images, you find yourself with a blurry image that you want to sharpen:

Input Image Low Frequencies



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 7/22

High Frequencies Sharpened image

To sharpen an image, we will proceed by making an image's high frequency data more prominent.
To do this we will need to find an
image's high frequency data, then add it back to the original image.
This process entails passing the image through a low-pass filter by
convolving it with a gaussian.
From this operation we get a blurred version of the original image. Next, we subtract the blurred image
from the original image to get the high frequency data from the original image. Finally, we add the
high frequency data back into the
original image and get a sharpened image!

for simplicity, I will show this process with the just the red channel of an image:

Input Image Low Frequencies

High Frequencies Sharpened image



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 8/22

We can combine all these operations into a single convolution operation called the unsharp mask filter.
We can construct this unsharp
mask filter for any image to sharpen it. This makes sharpening across all color channes
really easy:

Input Image Sharpened Image

Here's what it looks like if we use this unsharp makse filter to
take a sharp image, blur it, then try to sharpen it again

Sharp Image Blurred

Blurred then sharpened Blurred then sharpened with small coefficient

Evidently, resharpening doesn't seem to be as simple as the blurring process.
By simply applying the unsharp mask filter to the
blurred image, we do not
get the original sharp image back. By multiplying the unsharp mask by a small
coefficient, we can get a result



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 9/22

much closer to the original image.

Unsharpening a few images of my choice

Input Face Sharpened Face

Input DALL-E Mini Sharpened DALL-E Mini

Part 2.2: Hybrid Images

We can combine the low frequencies of one image with the high frequencies of another to make a hybrid image!
This hybrid image will
look like the first image from far away and the second image from up close. An
example is below:

Derek Nutmeg



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 10/22

Derek High Frequencies Nutmeg's Low Frequencies

Hybrid Frequency Hybrid Frequency (high's and low's swapped)

Here we can see the log magnitude of the Fourier transform of the two input images,
the filtered images, and the hybrid image.

Derek Nutmeg



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 11/22

Derek High Frequencies Nutmeg's Low Frequencies

Hybrid Frequency

As we can see, the low-pass filter only lets the low frequencies of the first image through.
The high-pass filter only lets the high
frequencies of the second image through.
Consequently, the hybrid image has the low frequencies from the first picture and the high
frequencies
from the second.

Here I experiment with some hybrid image results:

Mixing Ethan with Juliette

Juliette Ethan



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 12/22

Mixed Mixed Flipped

Mixing Ethan with Emma

Emma Ethan

Mixed Mixed Flipped

Bells & Whistles

I chose to implement hybrid images with color and found that the images looked the best if I used
full color for both the high and low
frequencies



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 13/22

Multi-resolution Blending and the Oraple journey
Here we want to make a seamless transition between two pictures by blending across frequencies.
To do this we will make Gaussian
Stacks and Laplacin Stacks for both images,
combine both stacks using a mask, then add all layers of the combined stack to get our
resulting blended image.

Part 2.3: Gaussian and Laplacian Stacks

Gaussian Stack

A Gaussian Stack is a collection of same-sized images made by repetitively blurring an input image
and saving it at each step. We blur
by convolving the current layer in the stack by a Gaussian filter.

Laplacian Stack

A Laplacian Stack is a collection of same-sized images made by finding the high frequencies
that exist in the current layer of the
Gaussian Stack, but not in any of the layers below the
stack. To find layer i of the Laplacian Stack, you subtract the i - 1th
layer of the
Gaussian Stack from the ith layer of the Gaussian Stack. At the last
layer of the Laplacian Stack, you save the most blurred version of
the input image you have in the
Gaussian Stack.

Here's what the Gaussian and Laplacian stacks for the red channel
of an orange looks like:

Gaussian Stack Level 0 Laplacian Stack Level 0

Gaussian Stack Level 1 Laplacian Stack Level 1



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 14/22

Gaussian Stack Level 2 Laplacian Stack Level 2

Gaussian Stack Level 3 Laplacian Stack Level 3

Gaussian Stack Level 4 Laplacian Stack Level 4



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 15/22

Gaussian Stack Level 5 Laplacian Stack Level 5

Gaussian Stack Level 6 Laplacian Stack Level 6

Gaussian Stack Level 7 Laplacian Stack Level 7



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 16/22

Gaussian Stack Level 8 Laplacian Stack Level 8

Here's what the Gaussian and Laplacian stacks for the red channel
of an apple looks like

Gaussian Stack Level 0 Laplacian Stack Level 0

Gaussian Stack Level 1 Laplacian Stack Level 1



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 17/22

Gaussian Stack Level 2 Laplacian Stack Level 2

Gaussian Stack Level 3 Laplacian Stack Level 3

Gaussian Stack Level 4 Laplacian Stack Level 4



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 18/22

Gaussian Stack Level 5 Laplacian Stack Level 5

Gaussian Stack Level 6 Laplacian Stack Level 6

Gaussian Stack Level 7 Laplacian Stack Level 7



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 19/22

Gaussian Stack Level 8 Laplacian Stack Level 8

Here's we can see how we can use two images and their laplacian stacks
to make a mixed image like an orapple:

Apple Laplacian Stack Level 0 (Red Channel) Orange Laplacian Stack Level 0 (Red Channel) Orapple Laplacian Stack

Apple Laplacian Stack Level 2 (Red Channel) Orange Laplacian Stack Level 2 (Red Channel) Orapple Laplacian Stack



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 20/22

Apple Laplacian Stack Level 4 (Red Channel) Orange Laplacian Stack Level 4 (Red Channel) Orapple Laplacian Stack

Combined Apple Laplacian Stack (Red, Green, and
Blue Channels added together)

Combined Orange Laplacian Stack (Red, Green, and
Blue Channels added together)

Final Orapple result (Red, G
added to

Part 2.4: Multiresolution Blending (a.k.a. the oraple!)

As you can see, our image blending algorithm has nice results! I achieved these results by
blurring the mask I use to combine images
more and more as we go from blending
high frequencies to blending low frequencies. As a result, the small features contained
in high
frequency data is blended together over a short distance while the large features contained in
low frequency data is bleneded
together over long distances.

The capabilities of this algorithm is best seen when I create an irregular mask when blending two images:

Putting a frog in a world of smiley faces:



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 21/22

Input Image 1 Input Image 2

Irregular Blending Mask Final Result

Blending my eye into my hand:



9/22/22, 4:32 PM CS 194-26 Project 2

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj2/cs194-26-ahn/ 22/22

Input Image 1 Input Image 2

Irregular Blending Mask Final Result

Bells & Whistles

I implemented full color for blending when completing this assignment

The coolest part of this assignment is finding out that I could edit frequencies at specific frequency bands using
Laplacian Stacks. I
want make a video where the starting frame has the high frequencies of the first video and
low frequencies of the second video, then
as time goes on the frequencies interpolate so that the ending frame
has low frequencies of the first video and high frequencies of the
second video.

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj1/cs194-26-ahn/


