
11/18/22, 1:37 AM CS 194-26 Project 4

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj5/cs194-26-ahn/ 1/15

CS 194-26: Image Manipulation and Computational Photography, Fall 2022

Project 5: Facial Keypoint Detection with Neural Networks
Ethan Gnibus

Overview
In this project I will detect facial keypoints on an image using many Deep Learning
techniques for Computer Vision

Part 1: Nose Tip Detection
Here I want to use a neural network to predict the
tip of someone's nose. I will proceed by training with
a small dataset, the IMM Face
Database.

Here I show a few sampled images from my dataloader
visualized with their ground-truth keypoints.

Here I plot the train and validation MSE loss during the training process.



11/18/22, 1:37 AM CS 194-26 Project 4

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj5/cs194-26-ahn/ 2/15

Here I show how hyper parameters effect results.

Here I change the learning rate

lr = 1e-100

lr = 1e-3



11/18/22, 1:37 AM CS 194-26 Project 4

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj5/cs194-26-ahn/ 3/15

lr = 1e-2

lr = 1

As we can see, lower learning rates "slow down" learning so that
the loss changes much less across epochs. Higher learning rates
"explode" learning so that the loss changes drastically across
epochs. I found lr = 1e-2 to be the best when training with
10 epochs for
a model with 3 layers. The runtime stays roughly
the same with different learning rates.

Here I change the number of layers with a learning rate of 1e-3

2 Convolutional Layers

Runtime = 1191.257 seconds

Number of Learnable Parameters = 31577378

3 Convolutional Layers

Runtime = 182.345 seconds

Number of Learnable Parameters = 940346



11/18/22, 1:37 AM CS 194-26 Project 4

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj5/cs194-26-ahn/ 4/15

4 Convolutional Layers

Runtime = 134.378 seconds

Number of Learnable Parameters = 26474

As we can see, as the number of convolutional layers increases,
the number of learnable parameters in the network decreases and
the runtime improves. This is becuase the less we convolve, the
more features we have to train in the fully connected layers (MLP).
I
found 3 Layers to have the best result. I found 3 convolutional
layers to get the best results.

Here I show two facial images where the network detects the nose correctly.

Here I show two facial images where the network detects the nose incorrectly.

I think the neural network fails to detect keypoints because the model is overfit! I think the model has learned to output keypoints
close to the center of the image because noses are generally photographed
in the center of the image. Even though this behavior
doesn't correctly
solve the detection problem we wanted to complete, the model thinks
it is preforming well. This is because learning
to output points near
the center of the image is similar to learning the average point, which
has low loss. We would have to mitigate
overfitting to change this behavior.

Part 2: Full Facial Keypoints Detection



11/18/22, 1:37 AM CS 194-26 Project 4

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj5/cs194-26-ahn/ 5/15

Here I want to use a neural network to predict
all 58 facial keypoints from the IMM Face Database
on new input images. I will proceed
by training with
a small dataset, the IMM Face Database.

Here I show a few sampled images from my dataloader
visualized with their ground-truth keypoints.

My Model

My architecture:

Hyperparameters:

Data Augmentation = {

imgaug.augmenters.Multiply,

imgaug.augmenters.GammaContrast,

Random Rotation,

Random Translation

}

Epochs = 25

Criterion = MSE Loss

Optimizer = Adam

Batch Size = 1

Convolutional Layers = 5

Trainable Parameters = 192908

Here I plot the training and validation loss across iterations:



11/18/22, 1:37 AM CS 194-26 Project 4

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj5/cs194-26-ahn/ 6/15

Here I show two facial images where the network detects the nose well.

Here I show two facial images where the network detects the nose poorly.

I think the neural network fails to detect keypoints because
The dataset is still too small. Right now, it seems that
the dataset is
optimized to work for the small train set,
but fails a lot on data not in that set.
Even with data augmentation, it
seems that the dataset
fails to mitigate overfitting. To solve this,
I can train on a bigger dataset.

During the learning process of a convolutional neural network, backpropagation
updates the filters that are convolved with the input
images. When trained
correctly, these filters extract useful information that allows our network to
predict keypoints. Filters in the first
few layers of the network detect
basic features such as lines and edges. As we go deeper into the network,
these filters get more
specialized and start learning more abstract features
such as texture. Here I display some learned filters from the first 3 layers
for
simplicity:

Convolutional Layer 1



11/18/22, 1:37 AM CS 194-26 Project 4

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj5/cs194-26-ahn/ 7/15

Convolutional Layer 2

Convolutional Layer 3

Part 3: Train With Larger Dataset
Here I want to use a neural network to predict
all 68 facial keypoints from the
ibug_300W_large_face_landmark
on new input images. I
will proceed by training with
the ibug_300W_large_face_landmark dataset, a dataset
with 6666 images.

My Model

My architecture:



11/18/22, 1:37 AM CS 194-26 Project 4

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj5/cs194-26-ahn/ 8/15

Hyperparameters:

Data Augmentation = {

  Multiply Brightness by (0.25, 2.0),

  Multiply Saturation by (0.25, 2.0),

  Multiply Contrast by (0.25, 2.0),

  Multiply Hue by (-0.5, 0.5),

  Affine Transforms: {

    Crop image by (0, 5) pixels,

    Scale x by (0.4, 1.5),

    Scale y by (0.4, 1.5),

    Rotate by (-25, 25) degrees,

    Translate x by (-20, 20) pixels,

    Translate y by (-20, 20) pixels,

    Shear image by (-20, 20)

  }

  iaa.Jigsaw with 1-3 rows and 1-3 columns,




11/18/22, 1:37 AM CS 194-26 Project 4

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj5/cs194-26-ahn/ 9/15

  Resize image to 224x224

}

Normalize Color (Divide by 255 then subtract by 0.5)


Epochs

  Training with old layers frozen and new layers unfrozen = 10

  Training with all layers unfrozen = 40

Criterion = MSE Loss

Optimizer = Adam

Batch Size = 16

Number of Layers = 18

Transfer Learned From = ResNet-18

Trainable Parameters = 11502664

Here I plot the training and validation loss across iterations. I
I train with all layers frozen except the first convolution and the
fully
connected layer at the end. This is because they are the only
layers I update and I'm using transfer learning. Next, I unfreeze
all layers
then continue to train. Here are the results:

MSE Loss when only new layers are unfrozen MSE Loss when all layers are unfrozen

Here I visualize some images with the keypoints prediction in the validation set.
I chose to jigsaw my training data so that my model
doesn't assume that
keypoints will always be in locations relative to each other.
I ended training with a train mse loss of 1.812 and
validation mse loss of 0.433.

Fantastic results: slight mistake on eyebrow

Almost perfect even out of frame



11/18/22, 1:37 AM CS 194-26 Project 4

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj5/cs194-26-ahn/ 10/15

Great results but not super aligned with ground truth

Amazing results with warp

Poor results with Jigsaw (although some are right) Nice results: messed up face shape

Try running the trained model on no less than 3
photos from your collection. Which ones does it
get right? Which ones does it fail on?

Here I run the model on 6 of my own images.

Nice: Messing up eyes Perfect! (With glasses too!)



11/18/22, 1:37 AM CS 194-26 Project 4

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj5/cs194-26-ahn/ 11/15

Bad: Noisy glasses and hair seem to mess it up Great: Messing up face shape

Really Bad: Noisy hair making it miss almost all
landmarks

Very Bad: Missing face shape, lips, and nose ridge. Probably because of
glasses

I submitted this score to the kaggle autograder with a score of 13.62223

Part 4: Pixelwise Classification
Report on the details of your implementation and your findings.

When making a Pixelwise Classification Model, I found that it might not
be as useful as I thought without doing a lot of extra work. One
problem
that I noticed is that output keypoints are found by taking a weighted average
of the heatmap for a given keypoint. This
means that if the keypoint were to be
outside of the image, it would be predicted wrong 100% of the time. This shows that
not using
pixelwise classification has a slight advantage in some cases (because
it can predict outside of the image's coordinates among other
things).

To generate heatmaps, I made a 2D Gaussian then shifted it to to the location
of a keypoint (Gaussian Distribution). My process can be
seen below. To make a 2D Gaussian,
I took the outer product of a 1D Gaussian and its transpose. I made this
1D Gaussian with a
kernel size of 35 and a sigma of 7.



11/18/22, 1:37 AM CS 194-26 Project 4

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj5/cs194-26-ahn/ 12/15

2D Gaussian
Location of keypoint 2D Gaussian shifted

Here I show accumulated heatmaps of all landmarks of two images.

Image 1 Accumulated heatmap of Image 1

Image 2

Accumulated heatmap of Image 2

My Model

My architecture:



11/18/22, 1:37 AM CS 194-26 Project 4

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj5/cs194-26-ahn/ 13/15

Hyperparameters:

Data Augmentation = {

  Multiply Brightness by (0.25, 2.0),

  Multiply Saturation by (0.25, 2.0),

  Multiply Contrast by (0.25, 2.0),

  Multiply Hue by (-0.5, 0.5),

  Affine Transforms: {

    Crop image by (0, 4) pixels,

    Scale x by (0.6, 1.4),

    Scale y by (0.6, 1.4),

    Rotate by (-20, 20) degrees,

    Translate x by (-15, 15) pixels,

    Translate y by (-15, 15) pixels,

    Shear image by (-15, 15)

  }

  Resize image to 224x224

}

Normalize Color (Divide by 255 then subtract by 0.5)


Epochs

  Training with old layers frozen and new layers unfrozen = 10

  Training with all layers unfrozen = 10

Criterion = MSE Loss




11/18/22, 1:37 AM CS 194-26 Project 4

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj5/cs194-26-ahn/ 14/15

Optimizer = Adam

Batch Size = 16

Number of Layers = 18

Transfer Learned From = U-Net

Trainable Parameters = 7764676

Here I plot the training and validation loss across iterations. I
I train with all layers frozen except the first convolution and the
fully
connected layer at the end. This is because they are the only
layers I update and I'm using transfer learning. Next, I unfreeze
all layers
then continue to train. Here are the results:

MSE Loss when only new layers are unfrozen MSE Loss when all layers are unfrozen

Visualize some (two) images with the keypoints prediction in the testing set.

Test Prediction 1
Test Prediction 2

Try running the trained model on no less than 3 photos from your collection.
Which ones does it get right? Which ones does it fail on?



11/18/22, 1:37 AM CS 194-26 Project 4

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj5/cs194-26-ahn/ 15/15

FAIL FAIL

FAIL FAIL

Part 5: Kaggle
Report your best model (if it is different from part 3 or
part 4, please describe the model architecture) and report
the mean absolute
error and Kaggle username on the website
after uploading your predictions on the testing set to our
class Kaggle competiton.

My best model was the one from part 3. My Mean absolute error was 13.62223 and
my Kaggle username is Ethan Gnibus.

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj5/cs194-26-ahn/


