
9/9/22, 9:04 PM CS 194-26 Project 1

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj1/cs194-26-ahn/ 1/9

CS 194-26: Image Manipulation and Computational Photography, Fall 2022

Project 1: Images of the Russian Empire

Colorizing the Prokudin-Gorskii photo collection

Ethan Gnibus

Overview
Text giving a brief overview of the project, and text describing your approach. If you ran into problems on images, describe how you
tried to solve them. The website does not need to be pretty; you just need to explain what you did.


In the early 1900's, Sergei Mikhailovich Prokudin-Gorskii travelled around the
Russian Empire with a goal in mind to photograph
everything he saw in color.
This was before color photography existed, so Sergei planned to take pictures of
the same scene three
times in a row. One photograph would be taken with a filter
over the lens so that only red light would be captured. The second would
only capture
green light. The third would only capture blue. Sergei hypothesized that one could
project all three images together to
reconstruct said scene in full color! In this
project I aim to take individual R, G, B photos from Sergei's collection, align them
using code,
then output them as a full color image.


To implement this image-aligning program, I first split the scans of Sergi's photos
into three channels: R, G, and B. Next, I implemented
a function that aligns
two images using exhaustive search. This funcion translates the G and R channels
by every (x, y) displacement
vector where x is chosen from the range -15 to 15 and y is chosen from the range from -15 to 15. At each displacement vector, I used
an image
matching metric to score each displacement vector. I implemented Sum of Squared Differences
(SSD) and normalized cross-
correlation (NCC), but I found that NCC's results were
better so I chose to use the latter. After scoring every displacement
vector for a
channel, I took the one that scored the best, and used it to tranlate the
input channel by said vector. This way, the R and G channels
can be aligned to the B
channel if they were to be ovelapped. I finished up by writing code that took these
three individual R, G, and B
channels, then combined them to be shown as a full color
image.


This implemetation worked for small images (it worked perfectly on 256x256 images
for example), but as the dimensions of an image
increased, the program took far too
long to compute. Not only that, but the quality of alignment dropped and eventually
stopped
working. This was because the (-15, 15) range of displacement I tested and
ranked became obsolete as the image sizes I tested
increased since they had lower
frequency change between pixels. To account for this, I implemented an image pyramid
function to
speed up alignment and ensure that it worked across all image sizes.


To construct this image pyramid, I created a mipmap-like collection of rescaled versions
of the input channel and the channel to
compare it to. I downsampled the input
channels by a factor of two, stored them downsampled channels, then repeated
the process
until the downsampled input channel was small enough to accurately
align with the downsampled compare channel using
displacement vectors with changes in
x being from the range -15 to 15 and changes in y from the range -15 to 15. Once I had
the
displacement vector at the lowest resolution in the pyramid, I multiplied the
displacement vector by a factor of 2, applied the
transition to the input channel
one resolution layer above it, then tested aligning the input channel at this layer
with the output layer
at the same layer using displacement vectors with changes in
x being from the range -3 to 3 and changes in y from the range -3 to 3. I
lowered the
ranges of values that we choose from because the adjustments we need to make after
aligning one layer below are small
(and the program will run faster with a smaller
range of tested displacement vectors). I then add these displacements to the previous
displacement vector, multipy the displacement vector by a factor of 2, and iteratively
repeat the process on all levels of the image
pyramid until we reach the highes resolution
channels. Once the program reaches the highest resolution channels, they should
align
nicely when translated by the total accumulated displacement vector.
By following this algorithm, I was able to align images that
normally took minutes to
compute in less than 10 seconds.


This implemetation worked for many images and was fast, but for some images it failed to
align images properly. Because of this, I
decided to implement edge detection and
image normalization to improve my accuracy. See the "Bells and Whistles" section
for more
details.

Result on example images



9/9/22, 9:04 PM CS 194-26 Project 1

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj1/cs194-26-ahn/ 2/9

The following is the result of my algorithm on all the provided example images:

cathedral.tif

Before displacement
After displacing G and R channels by


G: (2, 4)
R: (2, 12)


church.tif

Before displacement
After displacing G and R channels by


G: (0, 24)

R: (0, 62)


emir.tif

Before displacement
After displacing G and R channels by


G: (24, 48)

R: (40, 106)




9/9/22, 9:04 PM CS 194-26 Project 1

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj1/cs194-26-ahn/ 3/9

harvesters.tif

Before displacement
After displacing G and R channels by


G: (18, 60)

R: (10, 124)


icon.tif

Before displacement
After displacing G and R channels by


G: (16, 40)

R: (22, 88)


lady.tif

Before displacement
After displacing G and R channels by


G: (10, 56)

R: (12, 120)


melons.tif



9/9/22, 9:04 PM CS 194-26 Project 1

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj1/cs194-26-ahn/ 4/9

Before displacement
After displacing G and R channels by


G: (10, 80)

R: (12, 176)


monastery.jpg

Before displacement
After displacing G and R channels by


G: (0, -4)

R: (2, 2)


onion_church.tif

Before displacement
After displacing G and R channels by


G: (26, 52)

R: (36, 108)


sculpture.tif



9/9/22, 9:04 PM CS 194-26 Project 1

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj1/cs194-26-ahn/ 5/9

Before displacement After displacing G and R channels by

G: (-10, 32)

R: (-26, 140)


self_portrait.tif

Before displacement
After displacing G and R channels by


G: (30, 80)

R: (36, 174)


three_generations.tif

Before displacement
After displacing G and R channels by


G: (0, 60)

R: (0, 116)


tobolsk.jpg



9/9/22, 9:04 PM CS 194-26 Project 1

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj1/cs194-26-ahn/ 6/9

Before displacement After displacing G and R channels by

G: (2, 2)
R: (2, 6)


train.tif

Before displacement
After displacing G and R channels by


G: (0, 42)

R: (28, 84)


Result on extra images
The following is the result of my algorithm on some other images downloaded from the Prokudin-Gorskii collection.

lake.tif

Before displacement After displacing G and R channels by

G: (6, -24)




9/9/22, 9:04 PM CS 194-26 Project 1

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj1/cs194-26-ahn/ 7/9

R: (8, -36)


shell.tif

Before displacement
After displacing G and R channels by


G: (4, 26)

R: (8, 110)


rock.tif

Before displacement
After displacing G and R channels by


G: (2, 44)

R: (2, 164)


Bells and Whistles

Channel Normalization

I implemented channel normalization in an attempt to make similaraties in the input
channel and compare channel to be more
apparent. Here's an example of a channel before
and after normalization.



9/9/22, 9:04 PM CS 194-26 Project 1

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj1/cs194-26-ahn/ 8/9

Before normalize After normalize

Edge Detection

I implemented Edge Detection by referencing a lecture on the topic I found at
https://www.cse.psu.edu/~rtc12/CSE486/lecture02.pdf.
This approach involves taking
two partial derivatives in the x and y direction, then using the magnitude of
those partial derivative
channels edge detect! I found that it worked best when I
ignored the y direction. Results are as follows:

Input channel Ix = Partial derivative wrt x

Iy = Skipping partial derivative wrt y Magnitude of gradient (Ix^2 + Iy^2)



9/9/22, 9:04 PM CS 194-26 Project 1

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj1/cs194-26-ahn/ 9/9

After normalization Result after applying to G and R

Bells and Whistles Results

Alltogether, my extra work paid off!

Before After

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj1/cs194-26-ahn/


