2/17/23,2:02 PM CS 194-26 Pre-Canned Final Project

CS 194-26: Image Manipulation and Computational Photography, Fall 2022

Poor Man's Augmented Reality and A Neural Algorithm of Artistic Style

Ethan Gnibus

Poor Man's Augmented Reality

Overview
Using a box | drew on and a live video, | attempt to recreate an Augmented Reality scene where | can render using 3 dimensions.

Limiting myself to only a box with known 3D coordinates and a video as input, this means | must proceed without knowing intrinsic
parameters of the camera.

Part 1: Importing a video feed

To complete this project | decided to use cv2's VideoCapture function. This allowed me to read in video data in real-time. For the sake
of this proof-of-concept, | chose to use the video clip below.

Recorded on my phone

Part 2: Tracking Points

To make a 3D scene, can correspond 2D (X, y) points in image-space to 3D (x, y, z) points in world-space. The first step in this process is
to label 2D (x, y) points in image-space. | used matplotlib.pyplot.ginput() to manually label the 2D (x, y) points in the first frame of the
video. To get the points in the rest of the frames, | used off the shelf tracking from cv2! To do this | initialized a separate Median Flow
tracker on every point from the first frame (cv2.TrackerMedianFlow_create()) and tracked until the last frame. My results are below:

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/projFinal Assigned/cs194-26-ahn/ 1/8

2/17/23,2:02 PM CS 194-26 Pre-Canned Final Project

Tracked Points

Part 3: Finding the Projection Matrices

Using the known 3D (x, y, z) world-space points that correspond to the 2D (x, y) image-space points we just retrieved by tracking, we
can recover a transformation matrix for every frame that enables us to project 3D meshes onto our 2D video!
We proceed by solving least squares on our 2D and 3D points based on the following diagram:

Ax=0 form m,

A my,
Ay L% 0 0D 0 =X, =Y, -uwZ, =u 0

1 Yl Zl 1 _lel _V1YL _VIZI =N 0

10 0 0 0 —uX, —-uf -uZ -u ; 0

et] L] 5

O 0 0 WX ULZ ek ST S 0

L] L] n [} n_J

Linear Least Squares for Camera Calibration

Where (X;, Y;, Z;) are the 3D world-space points that correspond to the (u;, v;) 2D image-space points. We can reshape the resulting
vector to get the following matrix filled with m; entries. This matrix is the projection matrix that allows us to go from 3D world-space to
2D image-space.

Su m, m, m; my,

-
Y
z

1

The Projection Matrix

Here | display the 3D world-space's axes by defining points in 3D world-space, projecting them into 2D-image space, then using cv2's
line() function to draw to the screen! | repeat this process separately for every frame.

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/projFinal Assigned/cs194-26-ahn/ 2/8

2/17/23,2:02 PM CS 194-26 Pre-Canned Final Project

Displaying (x, y, z) world-space axes

Part 4: Displaying the Box

| use the method from above to define a box object in our scene. | use cv2's drawContours function to draw the box's green bottom
using trianges.

Box Mesh

A Neural Algorithm of Artistic Style

Overview

In this project based on A Neural Algorithm of Artistic Style, | use the content and style features from VGG-Network to transfer the
style from one image to another. | take these content and style features from 5 convolutional layers in VGG-Network, then train a
separate neural network to balance the loss between an output images content from one image and style from another image.
Using the following VGG-Network architecture, A Neural Algorithm of Artistic Style, uses conv1_1, conv2_1, conv3_1, and conv4_1 as
style features and conv4_2 as the content feature. A VGG-Network can be seen below:

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/projFinal Assigned/cs194-26-ahn/ 3/8

https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1508.06576

2/17/23,2:02 PM CS 194-26 Pre-Canned Final Project

VGG-16
- Ev-!NI ‘ﬂNM M M b
g0 |4 B A8 2 alhih 232 awnn 2888)3
=1 >I>3B |22 (22> 22> |22 >
=9 |28 g8 &5 5|8 |5l5l5/8 5|5|5/8 8I8I8 S
g|0| iuu‘ Q|0|0 8/8|8 Q00 o
The Architecture

The architecture depicted below is VGG16.

224 x 224 x3 224X 224 X 64

112 x 128

56

28 x 28 x 512

S 56 x 2
/ TxTxbH12

i x 512
e ey l 1%1 %4096 1%1%1000
Ay X, yers B AN

Ll

@ convolution+RelLU

] max pooling
[I -1

] fully conmected+Rel.U

7] softmax

VGG-Network Architecture

Part 1: Building The Network

To implement a paper, | trained a neural network to take in two images and output one image. The goal of the style transfer neural
network is to minimize the sum of the losses Lgtyje and Legntent- Lstyle @iMs to minimize the mean squared error between the Gram
Matrices of the style image and the output image respectively. Lcontent @imMs to minimize the mean squared error between the content
features of the content image and output image respectively. | used a variety of hyperparameters as seen below.

Part 2: Varying Style Ratio and Style Layers

Here | show how adjusting the style to image ratio affects outputs. From left to right | adjust from loss favoring content to loss favoring
style. From top to bottom | change which layers the style features come from.

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/projFinal Assigned/cs194-26-ahn/ 4/8

2/17/23,2:02 PM

CS 194-26 Pre-Canned Final Project

TN e

Bl

i ikig z X ;
Conv3_1: 104 Conv3_1:103 Conv3_1: 102

Conv3_1: 103

Conv4_1: 10> Conv4_1: 104 Conv4_1:1073 Conv4_1: 102

AR

Convs_1: 103 Conv5_1: 104 Convs_1: 103 Convs_1: 102

Part 3: Multiple different styles on one image

Here | show this project's capabilities by styling a picture of me eating a muffin on the beach:

) e == &
Style Content Output

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/projFinal Assigned/cs194-26-ahn/

5/8

2/17/23,2:02 PM CS 194-26 Pre-Canned Final Project

W,

Content

Style Output

Style Content Output

Part 4: Repetitive Styling

Just for fun, | decided to use the output of a style transfer as the style image in the next style transfer. Below are my results:

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/projFinal Assigned/cs194-26-ahn/

6/8

2/17/23,2:02 PM CS 194-26 Pre-Canned Final Project

Style . Content ' - Output

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/projFinal Assigned/cs194-26-ahn/ 7/8

2/17/23,2:02 PM CS 194-26 Pre-Canned Final Project

==

Style Content - Output

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/projFinalAssigned/cs194-26-ahn/

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/projFinal Assigned/cs194-26-ahn/ 8/8

