
4/13/22, 6:09 AM CS 184 Mesh Editor

127.0.0.1:5500/index.html 1/15

CS 184: Computer Graphics and Imaging, Spring 2022

Project 4: Cloth Simulator

Ethan Gnibus, CS184-antartica

Overview

Give a high-level overview of what you implemented in this project.
Think about what you've built as a whole. Share your thoughts on what
interesting
things you've learned from completing the project.

In this project, I implemented cloth simulation by following the PointMass and Spring method.
This required building the PointMass-
Spring grid itself, applying various forces to said PointMasses
to simulate things like gravity, colliding the cloth with primitives such as
spheres and planes,
and colliding the cloth with itself. I also implemented GLSL Shaders that run in parallel on the GPU so that my
simulation could
look pretty without taking hours to render!

Part 1: Masses and springs

Describe what you did in Part 1. etc...

In Part 1, I wrote the code that represents a grid of masses and springs.
To do this I first made num_width_points x num_height_points
PointMasses, oriented horizontally or vertically them based on the orientation variable, then emplaced them to the back of the
point_masses vector. Next, for every
PointMass in the point_masses vector, I created it's structural, shearing,
and bending springs and
added them to the springs vector if they should exist.

Take some screenshots of scene/pinned2.json from a viewing angle
where you can clearly see the cloth wireframe to show the structure
of your point
masses and springs.

Bird's eye view of pinned2. pinned2 viewed from an angle.



4/13/22, 6:09 AM CS 184 Mesh Editor

127.0.0.1:5500/index.html 2/15

Zoomed in shot of pinned2.

pinned2 with only structural springs.

pinned2 with only shearing springs. pinned2 with only bending springs.

Show us what the wireframe looks like (1) without any shearing
constraints, (2) with only shearing constraints, and (3)
with all constraints.

(1) without any shearing constraints.

(2) with only shearing constraints.

(3) with all constraints.



4/13/22, 6:09 AM CS 184 Mesh Editor

127.0.0.1:5500/index.html 3/15

Part 2: Simulation via numerical integration

Describe what you did in Part 2. etc...

In Part 2 I simulated external and spring correction forces to
act on the PointMasses that make up our cloth. I then used Verlet
integration
to find the new positions of the PointMasses after the forces are applied to
them. To better mimic real world behavior, I
limited how far each spring
could stretch by constraining the distance each pair of connected PointMasses
could be apart from one
another.

Experiment with some the parameters in the simulation.
To do so, pause the simulation at the start with P, modify the
values of
interest, and then resume by pressing P again.
You can also restart the simulation at any time from the
cloth's starting position
by pressing R.

Describe the effects of changing the spring constant ks;
how does the cloth behave from start to rest with a very low ks? A high ks?

With a low ks (less than 100) the cloth seems to vibrate
after swiftly falling to a resting position.
With a high ks (above 10000000) the
cloth falls to a resting
position very rigidly. While in a resting position, it is much
less flexible than the sub 100 or 5000 counterparts. It
seems
that the cloth goes from a simulating a free-flowing and light
material like netting to a dense and stiff material such as
construction paper and beyond as ks goes from low values to high values.

What about for density?

A low density value like 1 seems to reflect a material that doesn't weigh much
like netting. It holds it's top edge at almost a straight
line, which
means that there is not much weight pulling the material down between the pinned
PointMasses. On the other hand, a
high density value such as 10000 visually looks
very heavy as if it could be simulating chainmail. The top edge sinks down about
an
eighth of the way down the entire mesh! We can also notice that PointMasses jiggle
around unlike the low density case.
This tells us
that there is lots of stress on the springs when there is high density.
We can conclude that as density goes from low to high, the
material simulated goes
from one that doesn't weigh much to one that weighs a lot.

What about for damping?

In our simulation, low values of damping like 0 appear to accerate the cloth's movement
while higher values of damping like 1 appear
to slow the cloth's movement down.
From lecture we know that this is a product of a flaw in our simulation approach, so we can
discard that feature and look to the others. At low values of damping,
we can observe that the cloth swings about rather than falling to
it's resting position.
It is wavy and jittery almost like a sheet drying in the wind. As the damping factor
increases, we can observe the
cloth rest to a halt. Replaying the simulation
with a damping factor of 1 shows the cloth falling down to it's resting position
and
immediately stopping. It appears that the damping factor controls how powerful
springs in our model are at constraining the
movement of the PointMasses. Low values
of damping mean that springs have little control over the forces exerted on the cloth
other
than holding the cloth together. As damping values rise, springs get better and better
at making PointMasses less affected by other
forces.

For each of the above, observe any noticeable differences
in the cloth compared to the default parameters and show
us some screenshots of those
interesting differences and
describe when they occur.

When ks = 1 N/m, the material simulated is wiggly like a
waterbed.

When ks = 100000 N/m, the material simulated is stiff like
construction paper.



4/13/22, 6:09 AM CS 184 Mesh Editor

127.0.0.1:5500/index.html 4/15

When density = 1 gm/cm^2, the material simulated is light like
netting. When density = 99999 gm/cm^2, the material simulated is heavy like

like chainmail but jittery as if it's under lots of stress.

When damping = 0, the cloth swings rather than going to a
resting position. When damping = 1, the cloth falls to its resting position and sits still

almost immediately after it stops falling.

Show us a screenshot of your shaded cloth from scene/pinned4.json
in its final resting state! If you choose to use different
parameters than the default
ones, please list them.

Below I show shaded versions of scene/pinned4.json in it's final resting
state with default parameters.

Wireframe.

Normal Shading. Diffuse Shading.



4/13/22, 6:09 AM CS 184 Mesh Editor

127.0.0.1:5500/index.html 5/15

Blinn-Phong Shading. Texture Shading.

Bump Shading. Displacement Shading.

Mirror Shading. Custom Shading (Cell Shader).

Part 3: Handling collisions with other objects

Describe what you did in Part 3. etc...

In Part 3, I added collision to my cloth simulation. First, I added collision with
spheres by bumping a PointMass a little above the
sphere if it ever crosses over the
sphere's surface or rests on the surface. I also implemented collisions with planes by doing the same
if it
a PointMass crosses from one side of the plane's surface or rests on the surface. Both
of these involved finding the intersection
point, finding an offset point a little on
the outside of the object's intersection point, and applying a correction vector scaled
by friction
to correct the every PointMass's position that intersects.

Show us screenshots of your shaded cloth from
scene/sphere.json in its final resting state on the
sphere using the default ks = 5000 as well as with
ks =
500 and ks = 50000. Describe the differences in the results.

I simulated the following with Blinn-Phong Shading.



4/13/22, 6:09 AM CS 184 Mesh Editor

127.0.0.1:5500/index.html 6/15

ks = 50. ks = 500.

ks = 5000.
ks = 50000.

As ks goes from a low value to a high value, the cloth
seems to go from simulating a thin material to simulating
a thick material. At
lower values, more folds appear and
the cloth falls into place more swiftly. At higher values,
less folds appear and the cloth slowly
pulls itself into place.
When ks = 50, the cloth looks like it is
simulating a bandana. When ks = 500 the cloth looks like it
is simulating a
tablecloth. When ks = 5000, the cloth looks
like it is simulating a towel. When ks = 50000, the cloth
looks like it is simulating a sheet of
rubber.

Show us a screenshot of your shaded cloth lying peacefully at
rest on the plane. If you haven't by now, feel free to express
your colorful creativity with
the cloth! (You will need to complete
the shaders portion first to show custom colors.)

Wireframe.



4/13/22, 6:09 AM CS 184 Mesh Editor

127.0.0.1:5500/index.html 7/15

Normal Shading. Diffuse Shading.

Blinn-Phong Shading. Texture Shading.

Bump Shading. Displacement Shading.

Mirror Shading. Custom Shading (Cell Shader).

Displacement shading looks weird because the displaced plane vectors clip into the mesh's vertices or vice versa.
Cell shading (my
extra credit shader) looks weird because the light hitting the flat plane
and the flat cloth fall into the same bucket.

Part 4: Handling self-collisions

Describe what you did in Part 4. etc...

In Part 4 I created and accelerated collisions between the cloth and itself.
To do this, I assigned PointMasses hashes based on their
position in the scene
so that PointMasses with the same hash are in the same partition of the scene space.
Then I used this hash to
put PointMasses that are close in proximity into the same
bin in a spatial map. Then I loop through all PointMasses, see if the current
PointMass
collides with any other PointMass in it's spatial map bin, and apply a correcting
force to it if it does collide.

Show us at least 3 screenshots that document how your
cloth falls and folds on itself, starting with an early,
initial self-collision and ending with the
cloth at a more
restful state (even if it is still slightly bouncy on the ground).



4/13/22, 6:09 AM CS 184 Mesh Editor

127.0.0.1:5500/index.html 8/15

The following images were simulated using normal shading.

Step 1. Step 2.

Step 3. Step 4.

Step 5. Step 6.

Step 7. Step 8.

As observed, the cloth folds over itself nicely.

Vary the density as well as ks and describe with words
and screenshots how they affect the behavior of the
cloth as it falls on itself.

Below I will describe self collisions with low density (1 g/cm^2) using normal shading.



4/13/22, 6:09 AM CS 184 Mesh Editor

127.0.0.1:5500/index.html 9/15

Low density causes the cloth to fall in a way that makes big ripples. It folds back an forth over itself like lasagna.

When it falls it is relatively still and moves smoothly. It rests in a sleek, smooth way like a wet paper towel.

Below I will describe self collisions with high density (99999 g/cm^2) using normal shading.

High density causes the cloth to crash on itself and make a bunch of
tiny folds. It clumps up like dropping chainmail.

When it falls it lays to rest in a big pile.
It eventually spreads out more, but has tiny ripples that are

tight-knit.

Below I will describe self collisions with ks = 1 using normal shading.



4/13/22, 6:09 AM CS 184 Mesh Editor

127.0.0.1:5500/index.html 10/15

Like above, a low ks makes the cloth fold into tiny ripples. This time they are more evenly dispersed rather than clumped
around the center of mass.

The cloth falls into a springy pile. When it lays out flat, it is bubbly like a windy tarp or lava.

Below I will describe self collisions with ks = 99999 using normal shading.

When there is a high ks, the cloth falls and creates big ripples. The folds seem to be more uniform than the low density case.

The cloth slides into a nice overlapping pile like thin vinyl. The cloth moves smoothly and falls in place with barely any ripples.

High ks and low density are similar. Low ks and high density are similar.
The main difference between low ks and high density seems
to be that low ks
is much more bubbly and "springy" than the cloth with high density. For the
low ks case, think of steamy boiling
water. For the high density case, think
of bubbling stew.
The main difference between high ks and low
density seems to be that high ks
PointMasses are constrained more by
adjacent PointMasses than the low density case.

Part 5: Shaders

Describe what you did in Part 5. etc...



4/13/22, 6:09 AM CS 184 Mesh Editor

127.0.0.1:5500/index.html 11/15

In Part 5 I was able to make my cloth simulation look pretty
in real time by implementing GLSL Shaders! GLSL Shaders run in
parallel
on the GPU, so they can do lots of computationally intensive
work to make simulations look pretty without affecting preformance too
much. The mandatory shaders I implemented were Diffuse Shading,
Blinn-Phong Shading, Texture Mapping, Bump Mapping,
Displacement Mapping, and Environment-mapped Reflections (similar to a mirror).
I also did extra credit to make my own shader... A
Cell Shader!

Explain in your own words what is a shader program
and how vertex and fragment shaders work together
to create lighting and material effects.

A shader program is a program that runs parallel on the GPU so that
real-time renders can look good while still running fast. While the
CPU calculates things such as collisions and mesh building that have
to be done while knowing what everything else in the scene is
doing,
a shader program can run without needing to know those interactions.
Because of that, we can essentialy pixel sample in
parallel super fast
and render an impressive scene at a quick speed while keeping a similar
framerate. To write shaders in this project,
I used GLSL. This parallelization
feature allows shaders to do almost the same thing as the illumination functions
I implemented in
Project3, but with a different workflow.


To create lighting
and material effects, a shader program uses vertex and fragment shaders.
Vertex shaders change the geometric
properties of vertices retrieved from
the program running on the CPU. They can update the positions, normals, etc.
of vertexes before
sending that info over to fragment shaders. After
handling and sending these vertex values, the values are interpolated
over the
polygon they will appear on.
Fragment shaders take these interpolated values sent from the vertex shader
and use them to change
how the output pixels are colored. To keep things simple,
if you want to edit the features in a scene you'd write a vertex shader. If you
want to change how the features in that scene are colored, you'd want to write a
fragment shader.

Explain the Blinn-Phong shading model in your own words.
Show a screenshot of your Blinn-Phong shader outputting
only the ambient component, a
screen shot only outputting
the diffuse component, a screen shot only outputting the
specular component, and one using the entire Blinn-Phong
model.

The Blinn-Phong shading model is a variation of the Phong shading model
that is faster for directionally lit scenes. This shading model
has
components of diffuse shading, ambient shading, and specular shading.
I'll give examples of the three below. The combination of
these three
means that we could make it so our objects look globally illuminated
really quickly. The algorithm is as follows: separately
compute ambient color,
diffuse color, and specular color. Use the Diffuse Shading equation to get
diffuse color. For specular color (the
part the relects the shiny light), if
the dot product between the direction to the light and the vertex normal (both
normalized) is
positive, then find the halfangle and put the halfangle to
a power depending on how much you want the shine of the specular color to
span.

Here I am only showing the ambient part of Blinn-Phong shading. Here I am only showing the diffuse part of Blinn-Phong shading.

Here I am only showing the specular part of Blinn-Phong shading. This is Blinn-Phong shading.

Show a screenshot of your texture mapping shader using
your own custom texture by modifying the textures in /textures/.



4/13/22, 6:09 AM CS 184 Mesh Editor

127.0.0.1:5500/index.html 12/15

The texture I will be using.

Front-on of sphere. Side profile of sphere.

Front-on with cloth. Side profile with cloth.

Show a screenshot of bump mapping on the cloth and on the sphere.
Show a screenshot of displacement mapping on the sphere. Use the
same
texture for both renders. You can either provide your own
texture or use one of the ones in the textures directory, BUT
choose one that's not the default
texture_2.png. Compare the
two approaches and resulting renders in your own words. Compare
how your the two shaders react to the sphere by
changing the
sphere mesh's coarseness by using -o 16 -a 16 and then -o 128 -a 128.

The texture I will be using.



4/13/22, 6:09 AM CS 184 Mesh Editor

127.0.0.1:5500/index.html 13/15

Bump Shading on sphere.
Bump Shading on cloth.

Displacement Shading on sphere. Displacement Shading on cloth.

Here it is very clear that Bump Shading "projects" features on to the surface of the
objects to give the illusion that they extrude, while
displacement shading actually
moves the vertices. This is because in bump shading we only modify normals
based on texture
features, while in displacement shading we modify normals and
vector positions. I chose to use a texture with high red contrast so it's
easy to
differentiate vectors that have been moved. The sphere clearly shows extruding vertices
at areas that are red from the texture.
It's harder to tell on the cloth, but it's still there.


Below we will compare bump and displacement when we change the mesh's coarseness.

Bump Shading on sphere with -o 16 -a 16. Displacement Shading on sphere -o 16 -a 16.

Bump Shading on sphere with default settings. Displacement Shading on sphere with default settings.



4/13/22, 6:09 AM CS 184 Mesh Editor

127.0.0.1:5500/index.html 14/15

Bump Shading on sphere with -o 128 -a 128. Displacement Shading on sphere with -o 128 -a 128.

As the coarseness of the mesh increases, there is little to no quality increase
on Bump Shading other than the roundness of the
sphere. Displacement Shading, however,
sees massive quality improvements. The introduction of more vertices means that
displacements can be more precise. This is why the sphere goes from looking like a
spiky ball with a texture projected onto it at -o 16 -
a 16, to a planet with mountains
at default settings, to a ball with hairs at -o 128 -a 128. In total, Bump Shading
looks about the same
on objects with varying coarseness, but Displacement Shading gets
far more detailed as coarseness increases.

Show a screenshot of your mirror shader on the cloth and on the sphere.

Front-on of sphere. Side profile of sphere.

Front-on with cloth.
Side profile with cloth.

Explain what you did in your custom shader, if you made one.

For my custom shader, I chose to make a cell shader. The idea behind
a cell shader is that it bins similar color values into groups, then
chooses
one color to represent that entire group of colors. This simulates how
colors are often used in cartoons and gives the world a
comical feel.
To find these bins, I decided to use the dot product between the direction
to light and the normal.



4/13/22, 6:09 AM CS 184 Mesh Editor

127.0.0.1:5500/index.html 15/15

Front-on of sphere.
Side profile of sphere.

Front-on with cloth. Side profile with cloth.

pinned2. pinned4.

Unrealistic!

Part 6: Extra Credit

If you implemented any additional technical features
for the cloth simulation, clearly describe what you
did and provide screenshots that illustrate
your work.
If it is an improvement compared to something already
existing on the cloth simulation, compare and contrast
them both in words and in
images.

I implemented a custom shader to simulate cartoony artsyles
in real time! This shader is called a cell shader. Refer to the Part 5
section to see it!

The website for my writeup is https://cal-cs184-student.github.io/sp22-project-webpages-ethangnibus/


